Cervical Spine Injuries in the Athlete:

Outline

• Incidence

- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Stingers and burners
 - Transient Quad
 - Fractures & dislocation
 - Return to play

Incidence

- Hard to calculate
- 1/10 spine injuries
- 223 football players neurologic injury/25yrs

Much of this Is Sports Specific

- Trampoline
- Football
- Water sports
- Gymnastics
- Rugby
- Ice Hockey
- Wrestling

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation
 - Return to play

Pathophysicology

 C spine: Heavy head on small narrow spine

- Protective mechanism:
 - Lordosis
 - Muscles
 - Ligaments
 - Bones

What determines injury

- Position of Neck
- Direction of applied of load

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation
 - Return to play

Diving Injuries

- Classic axial compression injuries
 - Average patient
 - Male, 13 yr or older
 - No formal diving training
 - 50% alcohol involved
 - Evenly divided pool/natural water bodies
 - Avg. depth 1-7 ft.

Diving Injuries

- Avg underwater deceleration velocity
 - Entry speed 15-33 ft/sec
 - Velocity dissipation approx. 12 ft.

Diving Injuries

- Prevention
 - Nationally Coordinated Education Program
 - Increased awareness
 - Reminders with on site warning signs

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation
 - Return to play

 Next classic example of sports related cervical spine injury mechanism

 Primarily axial loading

- Primary cause of injury is poor technique
 - Spearing
 - Flexed neck becomes a "segmented column"
 - Negates the potential for buckling

- Prevention linked to education
 - Head Up "See What You Hit"
 - Knees Bent at Impact
 - Drive Through with Legs
 - Goal of maintaining normal cervical lordosis

- Spear tackling outlawed 1976
 - Clear decrease in cervical injuries
 - Shows that a mechanism can be identified and corrected

Football Safety Improved

- Review of football injury registry
 - Historic introduction of helmets lead to
 - 66% decr. intracranial hemorrhage
 - 204% incr. c-spine fx, dislocation
 - 116% incr. quadriplegia
 - A new "weapon" had been introduced

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation
 - Return to play

Cervical Sprain

- Ligamentous injury
- Usually due to direct collision
- Presentation
 - pain localized to neck <u>without</u> <u>radiation</u> into arms
 - decreased cervical motion
 - no focal tenderness

Cervical Sprain

• Management

- cervical immobilization
- radiographic evaluation
- rehabilitation if necessary
- Return to play
 - pain free
 - normal ROM
 - full motor strength

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation
 - Return to play

Burners/Stingers

- Transient root symptoms
- "dead arm"
- Under reported

Burners/Stingers

- 2 different etiologies
 - Root compression
 - Extension and ipsilateral deviation
 - Compression at foramen
 - Plexus stretch
 - Contralateral deviation
 - Depression of shoulder
 - Pulls on brachial plexus

Burners / Stingers

- These are very common
 - One predisposes for the next
 - Most common C spine injury in football
 - 7.7% year. 65% during a players life time

Management

- Remove from activity- Pt examination
- Stingers may return to event if:
 - Complete resolution of sx
- Significant/sustained stinger (first time)
 - MRI to r/o disk herniation or structural abnormality
- Persistent sx
 - Cervical radiographs, MRI
 - +/- CT or SPECT is suspect occult fx

Vaccaro et al., The Spine J 2002

Torg Ratio

- Postulated to correlate
- Based on lateral cervical radiograph
 - Width of canal divided by vertebral body (a/b)
 - $-<0.8 \rightarrow 3x$ risk for stinger (Meyer, AmJSportsMed 1994
 - Potentially related to associated narrow foramen

Foraminal Stenosis

- Foraminal / vertebral body ratio
 - Measured off oblique film
 - May be better predictor of root symptoms such as burners / stingers
 - normal and critical value unknown

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation
 - Return to play

Transient Quadraplegia

- Variable extent of symptoms
 - True deficit to burning hands
 - Prob variant of central cord syndrome
- More sense to be related to Torg ratio
- Transient
 - usually complete recovery in 10 15 minutes
 but may take up to 48 hours.

Torg's Ratio

- Abnormal ratio
 - 93% of those with transient quadriplegia
 - As compared to 3- fold increase in stingers
- But what do we do with this information?

Functional Stenosis

- A canal size (space available for the cord) that precludes or obliterates the protective cushion of CSF or causes deformation of the cord in any position.
- Takes into account soft tissues, dynamic nature of stenosis.
 - Increased risk of permanent quadriplegia after fracture dislocation (100% vs 80%)
 - In every case of quadriplegia without fracture/dislocation functional stenosis was present

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation
 - Return to play

Fractures and Dislocations

- Full range of cervical injuries may be encountered
 - May be challenging to determine on the field
 - Err on immobilizing and pursuing evaluation
 - Question of helmet / pads often arises
 - Leave all on in the field if question of injury

Cervical Spine Trauma

- The diagnosis of an unstable spinal injury and its subsequent management can be difficult
- A missed spinal injury can have devastating long term consequences
- As such, spinal column injury must therefore be presumed until it is excluded

- Missed or delayed diagnosis
 - often attributed to failure to suspect cervical injury
- Guidelines are needed to maximize sensitivity and efficiency in the evaluation of potentially unstable spine injuries
- Protect spine at all times during the management of the multiply injured patient.
- Up to 5% of spinal injuries have a second, possibly non adjacent, fracture elsewhere in the spine

This form may be copied freely but not aftered without permission from the American Spinal Injury Association

GHC 1992

Trauma Radiographs

- An adequate cervical spine series should include 3 views:
 - a true lateral view: include all 7 cervical vertebrate as well as the C7-T1 junction.
 - an AP view.
 - an open-month odontoid view.
- A swimmer's view may additionally allow adequate visualization of the cervical spine

Trauma Lateral

Cervical Spine Trauma Protocolization

Cross-table lateral

Additional views: AP, open mouth,

Swimmers (when cannot see C7-T1) Obliques, flexion-extension Entire spine (with any fracture of spine)

CT:

Axial, saggital and coronal reformats, 3D MRI C-spine

Neurologic deficit referable to C Spine:

Surgical subspecialty consultation and MRI and C-spine

Note: CT and/or MRI are not always available

Trauma Lateral C-Spine

Lateral C-Spine

Soft Tissues

Remember:

"Six at Two and 22 at Six" 6 mm soft tissue allowed at C2

(or 1/2 AP vert body)

22 mm allowed at C6

(or 1 AP vert body)

Prevertebral soft-tissue hematomas are common in avulsion fractures or hyperextension injury

S

AP Cervical Spine

Open Mouth Odontoid

Fractures and Dislocations

Outline

- Incidence
- Pathophysiology
- Diving injuries
- Football
 - Sprain
 - Sting and burn
 - Transient Quad
 - Fx & dislocation

- Return to play

Survey of 346 Physicians

- 10 case examples (Morganti et al., Spine 2001)
 - Inconsistent recommendations
 - Lower level of play recommended by more senior physicians (only significant in 3 cases)
 - Spine specialists recommended higher level of play (only significant in 3 cases)
 - NO CONSENSUS

Return to Play

- Vaccaro et al. (The Spine J 2002, Orthopaedics 2001)
 - Review of current literature and criteria
 - Torg & Ramsey-Emrheim, Med Sci Sports Exerc 1997
 - Cantu et al., *Clin Sports Med* 1998
 - Maroon & Bailes, *Spine* 1996
 - Weinstein, Clin Sports Med 1998

Absolute Contraindications

- Cervical myelopathy
- Cord abnormality on MRI
- Asymptomatic ligamentous laxity
- C1-C2 hypermobility (ADI >4mm)
- Multi-level Klippel-Feil deformity
- Basilar invagination
- Arnold-Chiari malformation
- AS, DISH

Vaccaro et al., The Spine J 2002

Absolute Contraindications

- Continued cerv discomfort, neuro deficit, or \downarrow ROM
- Symptomatic disk herniation
- Healed subaxial fx with kyphotic or coronal deformity
- >2 prev episodes of transient quadripleg
- H/O cervical laminectomy
- H/O C1-C2 fusion
- H/O three-level cervical fusion

No Contraindications

- Healed, stable C1-C2 fx (non-op), normal ROM
- Torg ratio <0.8 in an asymptomatic pt
- H/O cerv DDD successfully treated
- Stable healed subaxial fx, no kyphotic deformity
- S/P single level ACF (healed) or single / multilevel post cerv microlaminoforaminotomy
- H/O 2 stingers in same or multiple seasons

Relative Contraindications

- H/O transient quadriplegia/quadriparesis with full return baseline strength, ROM, mild-mod stenosis on imaging
- 3 or more stingers in same season
- Stable, healed 2-level subaxial ACF or PCF +/- instr

Return To Play Criteria

- *Pt and family understand possibility of recurrent injury*
- Clearly no consensus

Common sense

Summary

- Cervical strains are common
- More significant injuries less common but significant potential sequelae
- Safety measures have been proposed
 - Alteration in sport rules
 - Definition of return to play criteria
- Certainly consensus is lacking
- Often safer to say NO, dialogue with patient open

